Cross-domain Collaboration Recommendation

ABSTRACT

ABSTRACT

I 3' ... H 3' 3' , 3' ... '3

Figure 1: The comparison of existing collaboration and new collaboration trends over years. DM - Data Mining domain; MI - Medical Informatics domain; TH - Theory domain; VIS - Visualization domain; DB - Database domain. The trends of cross-domain collaborations in all but one case are growing (The exception between DM and VIS remain roughly constant over time). Newly formed cross-domain collaborations are significantly in all cases.

2. PROBLEM DEFINITION

Algorithm 1: si si si si si si con C L

Figure 3: Graphical representation of CTL model.

3.3 Cross-domain Topic Learning (CTL)

Table 1: Notations in the CTL model.					
MB L	DE C. I				
T	1 3				
\overline{d}	🕯 . , , , , , , , , , , , , , , , , , ,				
A_d	.				
di				
di	$oxed{eta}^{\prime}$. The second $oxed{eta}^{\prime}$, the second $oxed{eta}^{\prime}$, the second $oxed{eta}^{\prime}$				
di	- di , ',				
θ_v	1,, ,				
$\theta_{vv'}$	· · · · · · · · · · · · · · · · · · ·				
ϕ_z	1, , /				
α, β	D θ, θ' , ϕ				
λ	_ = = = = = = = = = = = = = = = = = = =				
γ, γ_t	B'. , '' '' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '				

ď C L 1: X_{di} $p(s|d) \sim beta(t, t, t)$, $\vec{s} \cdot \vec{s} \cdot beta(t)$ Z_{di} , J'

1,932,442	,•	a', a'r,	ď, , ď	_ _	
		/4' . 4'			
• Data	Mining: VE	', , . ', _ . ',	,	_ / .	
_ /	ਕ'ਕ' ਕ',∶ I	KDD, DM,	ICDM, ∦ E	DM .	KDD
. 22	2,862 - , .	_ J '. r , J ' ,	- · •		
		tics: VE-'			
		' _ M' _			
J ,	. B ₋ ₹,	. , I .	_ , A	. I ਤ'ਤ'	J '

- Theory (E3' ..., 3' ..., C, F C ..., DA, ..., 5' ..., 5,449 ..., 27,712 ..., 3' ..., 2' ...
- Visualization: VE3' ____, 3' _3' ___, ___, 3' 3' 3' ___,

Table 2: Recommendation performance by different methods on the four cross-domain test cases (%). Content— Content Similarity; CF— Collaborative Filtering; Author— Author Matching; Topic— Topic Matching.

Cross	ALG	P@10	P@20	MAP	R@100	ARHR	
domain						-10	-20
	C 🛂 .	10.3	10.2	10.9	31.4	4.9	2.1
D .	CF	15.6	13.3	23.1	26.2	4.9	2.8
M , ()	Η	17.4	19.1	20.0	29.5	5.0	2.4
WL _ / ()	A	27.2	22.3	25.7	32.4	10.1	6.4
J ' ()		28.0	26.0	32.4	33.5	13.4	7.1
• ()	Κ.	30.4	29.8	31.6	27.4	11.2	5.9
	C L	37.7	36.4	40.6	35.6	14.3	7.5
	C 🛂 .	10.1	10.9	12.5	45.9	3.6	2.1
M '.	CF	18.3	20.2	21.4	47.6	5.3	3.9
I ()	Н	25.0	26.5	28.4	59.1	6.4	4.2
1 .()	A _' .	26.2	29.6	32.2	54.8	10.5	5.4
D . ()	,	29.4	26.3	34.7	59.3	11.5	5.2
D ()	Κ.	27.5	28.3	30.7	57.2	10.5	5.0
	C L	32.5	30.0	36.9	59.8	11.4	5.4
M*	C •'	5.8	5.7	9.5	19.8	1.9	0.9
	CF	13.7	17.8	18.9	34.3	2.7	1.3
I .()	Н _/	18.0	19.0	19.8	36.7	3.4	1.3
	A ₁ .	20.1	23.8	29.3	64.4	5.3	2.1
D .		26.0	25.0	33.9	48.1	10.7	5.6
$M_{\scriptscriptstyle \perp}$, ()	Κ.	21.2	23.8	32.4	48.1	10.2	4.8
	C L	30.0	24.0	35.6	49.6	12.2	6.0
	C 🛂 .	9.6	11.8	13.2	18.9	3.1	1.8
	CF	14.0	20.8	26.4	29.4	6.9	4.3
	Н	16.0	20.0	27.6	30.1	6.3	4.4
D .	Α, .	22.0	25.2	27.7	31.1	11.9	6.7
D . М , ()		26.3	25.0	32.3	31.4	13.2	8.8
	Κ.	23.0	25.1	29.3	30.2	10.4	5.4
	C L	28.3	26.0	32.8	36.3	14.0	9.1

Restart parameter analysis. \(\sigma \) \(\frac{1}{2} \) \(\frac

Figure 6: Performance on new collaboration prediction of all algorithms.

4.3 Prototype System

5. RELATED WORK

- 22 L. L. \sim . \sim
- 24 J. 🛪 🔉 , . . M. E a dJ · a · M d c , 354:2463 2472, J → 2006.
- 979 988, 2010.

- 418 425, 2005.
- L a J , a , 82(2):211 237, 2011.

- 76(1):71 83, 2012.
- 70(1):/1 65, 2012.

 34 CVE / D. M. B\$\delta \cdot C \delta \delt I R cS '11, 12 245 252, 2011. J. 1, J. 1, J. L. F. 2
- 36 J. , J. , J. L.E. & ... , ... &I DASFAA'07, & 1066 1069, 2007.

8. APPENDIX