A Unified Probabilistic Framework for Name Disambiguation in Digital Library

Jie Tang, A.C.M. Fong, Bo Wang, and Jing Zhang

Abstract

Despite years of research, the name ambiguity problem remains largely unresolved. Outstanding issues include how to capture all information for name disambiguation in a unified approach, and how to determine the number of people K in the disambiguation process. In this paper, we formalize the problem in a unified probabilistic framework, which incorporates both attributes and relationships. Specifically, we define a disambiguation objective function for the problem and propose a two-step parameter estimation algorithm. We also investigate a dynamic approach for estimating the number of people K. Experiments show that our proposed framework significantly outperforms four baseline methods of using clustering algorithms and two other previous methods. Experiments also indicate that the number K automatically found by our method is close to the actual number.

Index Terms-Digital libraries, information search and retrieval, database applications, heterogeneous databases.

1 Introduction

1.1 Motivation

We be b a be a e a e
 [40]. $I \quad e, e \quad e \quad$ ac e ea c e f e $f \quad e \quad$ ebad e a e e b ca da af e da aba e c a DBLP, ACM D a Lba, C eSee, a d SCI. I e e a $e \quad e \quad a b$ a e a e a b be.F.1 a fede a e. I F. 1, eac de de e a a e (e ed). Eac d ec ed ed e de e a e a ee a e

- J. Tang and J. Zhang are with the Department of Computer Science and Technology, Tsinghua University, Rm 1-308, FIT Building, Beijing 100084, China. E-mail: jietang@tsinghua.edu.cn, zhangjing0544@gmail.com.
- A.C.M. Fong is with the School of Computing and Mathematical Sciences, Auckland University of Technology, AUT Tower Level 1, 2-14 Wakefield Street, Auckland 1142, New Zealand. E-mail: afong@aut.ac.nz.
- B. Wang is with the Department of Computer Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
E-mail: bowang@nuaa.edu.cn.
Manuscript received 1 July 2008; revised 5 Apr. 2010; accepted 16 Nov. 2010; published online 27 Dec. 2010.
Recommended for acceptance by B.C. Ooi.
For information on obtaining reprints of this article, please send e-mail to: tkde@computer.org, and reference IEEECS Log Number TKDE-2008-07-0335. Digital Object Identifier no. 10.1109/TKDE.2011.13.

1.2 Prior Work

T e be a bee de e de e a ed dffe e d a a d a a e e [4], [5], [7], eb a ea a ce d a b a [3], [20], a e de fca [26], a dObec d c [49]. De e a a ac e ed, e a e a b be ea a e e ed.
I e ea, e d f a ed a b a a fa ee ca e e : supervised based, unsupervised based, a d constraint based. T e e ed-ba ed a ac (e. ., [17]) e ea a ecfcca fca de f eac a a e f a a - abe ed a da a. T e, e ea ed de ed ed c ea a feac a e.I e e ed-

Fig. 1. An example of name disambiguation.
a , a d a e dffe e a a ea ed dffe e a . T e c a -ba ed a ac a \Rightarrow e e e a T e dffe e ce a e - ded c a a e ed de ec e a a d be e da a a (e. ., [2], [51]). F e e, e e a e a ac e ba ed e, c a /a a a d c b a f edffe e a ac e a e bee ded.F e a e, W a e a. [47] d ce a e a e e -ba ed a ac e e e c e ce e da aba e a d de e a de f a e e ceae e e.Da e a.[11] a ede e eda e ac e e c e a e ca e e cc e ce f a ed e e a e e. T e e de f efe e ce a e a bec (e. ., a a c a b d) e eaed a e f a bec ad acec. McRae-S e ce a d S adb [28] e e a a -ba ed a ac a d a b a a e-caec a e b ef-c a c a ea . T e a ac ca ac e e a be a ea e eca. Y e a.[50] a ede e ed e ed a ac e

$$
\text { de } f \quad \text { ef } f \quad \text { fa } b \quad a b b e a
$$

ece e a ea. M e ece, C e e a.[8] d c b e e dffee d a b a a ac e
a d
$c \quad c \quad b \quad e \quad e \quad e \quad f \quad$ e ba e-e e e
e e a e e e acc ac fe e W a e a. [46] e a ea ebcta e e e e e f b c a e ef ec ed be e ce ed b c. O $\begin{array}{llllllll}\text { a d Lee [32] } & \text { d } & \text { e ca ab } & \text { e } & \text { f } & \text { e } & \text { a e } \\ \text { d a b a } & \text { be } & \text {. A } & \text { c } & \text { e } & \text { a }\end{array}$ bee ade, e e d d ac e e a fac d a b a e de e a :

1. S e e a c e e d (e.., [31], [35], [48]) f c a e da a a ba ed
 acc d de a . A fe e ea ce (e. ., [38], [52]) c b e e ece f f a . F e a e, Z e a. a e c be f a ba ed b e e a b e (.e., de a) a d a ca c e $b \quad f \quad c \quad c \quad a \quad b \quad e a \quad e \quad e d \quad a$ e c a \quad e $f\left\langle\begin{array}{lllll}a & b & e & a & e\rangle\end{array}\right.$
a e ce, a d be e e a e
ad a de. Te a e c a
ea a e be e d cad ca f a . A e a e e abe de a e a a b e a c ea e e c e e f a e e ce e d a ce ea e, a ba a ce ec b f edffe e a a e be Te ae abe c c de a add a b e a f a ec e bec e de ade e ac e c e e. F e, [52], e e e e a da a e c a e fe a be.Tef daae (cab) a $e(b$ a $) a b$ e a d e ec d da a $e f$ DBLP b b a ca da a a a b e. We a e a c c e de a b e f ae edf ac e a ed a b abe effec e.
2. T e ef a ce fa eaf e e ed e d de ed acc ae e a $\quad K$. A e e a c e a c a X - ea [33] ca a a ca f d e be K ba ed e e d ca be d ec a ed e a e $d \mathrm{a} b \mathrm{a} \quad \mathrm{be}$.
3. I e e d, e da a a c a e e de a d ea ; e be e e e e a be e dffe e e a (e.., C A a d C a) be ee de.Te e fdffee ea a e dffe e a ce f e a ed a b a be.H a a ca de ede ee f $c \quad b \quad f$ dffe e e a c a e be.

1.3 Our Solution

На c d ced a e a e e a
fed bab c f a e add e e ab e c a e e. S ecfca, ef a_{7} e ed a b a
be aMa Ra d Fed (MRF) [16], [24], c edaa a c e e ba a b e a d ea . Wee ead a ca ac f e ae be f e e K a da - e a f be e ef a ce a ed a b a a e $e d$ beca e e ac a e ad a a e f e de e de ce be ee a e a e . T e be f ed e, ef f a_{7} e a e be f a ed a b a fedfa e $a d a c e \quad e \quad e \quad e$.

T e ed fa e e e ea.O e ca c aea ea a fea e ca fea e e f a e, e. , a fea e ba ed e eb ea $c e \quad e$ ed. Tefa e ca be a e e ded dea $\begin{array}{lll}a & e & b e\end{array}$ e a a da aba e [4].
O c b a e c de: 1)f a_{7} a $f \quad e \quad a \operatorname{ld} b$ a $b e \quad a \quad f e d \quad b a b-$ cfa e ; 2) a fa a e e aatere afa \quad a d 3) a e ca efca f e effec e ef edfa e.

TABLE 1
Attributes of Each Publication p_{i}

Attribute	Description
p_{i} title	title of p_{i}
p_{i}.pubvenue	qublished conference/igurnal of p_{i}
p_{i} year	published year of p_{i}
p_{i} abstract	abstract of p_{i}
p_{i}.authors	authors name set of $p_{i}\left\{a_{i}^{(0)}, a_{i}^{(1)}, \ldots a_{i}^{(1)}\right\}$
p_{i} references	references of p_{i}

2 Problem Formalization

2.1 Definitions

I ed c
eac a e p_{i} a
ca bee acedf ce c a DBLP, Lb a. A e e. , a d C e ee. . .ed .
Definition 1 (Principle Author and Secondary Author). Each paper p_{i} has one or more authors $\mathrm{A}_{\mathrm{pi}}=\left\{\mathrm{a}_{\mathrm{i}}^{(0)}, \mathrm{a}_{\mathrm{i}}^{(1)}, \ldots \mathrm{a}_{\mathrm{i}}^{(\mathrm{u})}\right\}$. We describe the author name that we are going to disambiguate as the principle author $\mathrm{a}_{\mathrm{i}}{ }^{(0)}$ and the rest (if any) as secondary authors.
We def ef e e f d ec ed ea be ee a e (Tabe 2). S ecfca,

- C P bVe e $\left(r_{1}\right)$ e e e a e b ed a e a e e e. F e a e, fb a e a e b ed a KDD, e c ea e a d ec ed C PbVe e ea be ee e a e. I e e eace e a e a e a dffe e e ea c fed, d b
a e a dffe e e.
- C A $\quad\left(r_{2}\right)$ e e e a a e p_{1} a d p_{2} a e a ec da a e a e a e, .e., $A_{p 1}^{\prime} \cap A_{p 2}^{\prime} \neq \emptyset, \quad$ e e $A_{p 1}^{\prime}$ de e e e fa ${ }_{(0)} \quad \mathrm{f}$ a e p_{1} e c d e c e a $a_{i}^{(0)}$, .e., $A_{p 1}^{\prime}=A_{p 1} \backslash a_{i}^{(0)}$. T ca , a e a a e a c c a dbe e a e e
- C a $\left(r_{3}\right)$ e e e e a e c a e a e. I a a a c e
e .F e, e c ae ae caf a a f : If a e $p_{1} \mathrm{c}$ e a e $p_{2}, p_{3}, \ldots, p_{\mathrm{n}}$, e e e ab d eced a e e a a a c ed a e , add d ec ed a e ea be ee p_{1} a d e c ed a e.
- C a $\left(r_{4}\right)$ de e c a ed a e feedbac.F a ce, e e ca ecf a a e dbed a b a ed e a e e d be dffe e e
- τ-C A $\quad\left(r_{5}\right)$ e e e τ-e e C A
 Mce ad Ade Ma, ad p_{j} a a Da dMce a d Fe a d M f d. We a e d a b ae Da d Mce. Ad f Ade Ma ad Fe ad $\mathrm{M} f \mathrm{~d}$ a c a a e a e, e e a p_{i} a d p_{j} a e a 2-C A e a

TABLE 2
Relationships between Papers

\boldsymbol{R}	\boldsymbol{W}	Relation Name	Description
r_{1}	w_{1}	CoPubVenue	p_{i} pubvenue $=p_{j}$ pubvenue
r_{2}	w_{2}	CoAuthor	$\exists r, s>0, a_{i}^{(r)}=a_{j}^{(s)}$
r_{3}	w_{3}	Citation	p_{i} cites p_{i} or p_{i} citec $n_{s} p_{i}$
$-r_{4}$	w_{4}	Constraint	feedback supplied by users
\boldsymbol{r}	r_{5}	w_{5}	τ-CoAuthor

T a e cea, e e a f e ab dee e e e a e a ea τ-C A ea F e e e a e da a e, e ca c c a c a e e e eac de de e a a a e a deac ed e de e a c a ea . F a a e p_{1} a d p_{2}, e ca ba e c e de $A_{p 1}^{\prime}$ a d $A_{p 2}^{\prime}$ b e c a . If a d $A_{p 1}^{\prime} \cap A_{p 2}^{\prime} \neq \emptyset, \quad$ e a e a e a e a C A ea . F de e a 2-e e C A e a \quad e c c c a e $A_{p 1}^{2}$ a d $A_{p 2}^{2}$ acc d ec a e . S ecfca , $A_{p 1}^{2}$ e e fa b e e d $A_{p 1}^{\prime} \quad$ a e b f e a $\quad A_{p 1}^{\prime}$, .e., $A_{p 1}^{2}=A_{p 1}^{\prime} \cup\{N B(a)\}_{a \in A_{p 1}^{\prime}} \quad$ e e $N B(a)$ e e f e b f de $a . \mathrm{T} \mathrm{e},{ }^{p 1} \mathrm{e}$ a e a e $\quad p_{1}$ a d p_{2} a e a $2-\mathrm{C}$ A \quad a $\quad \mathrm{fad}$ f $A_{p 1}^{2} \cap A_{p 2}^{2} \neq \emptyset . \mathrm{F}$ de e e e a e a e a 3-e e \quad C A , ef e e e d $A_{p 1}^{2}$ f da a e $A_{p}^{3} \mathrm{f}$ eac a e a d f e e a e a e ec , e a e a e a ea3-C A ea .T e e feac e f ea $\quad r_{i}$ de ed b w_{i}. E a f e a e f dffee e be de c bed Sec 4.

I e a ed a b a be, e a e a ea bec e ed e e a be a ed e e b e e. Tee a be a ed e d a b a a We de c be c f a e a cluster atom.

Definition 2 (Cluster Atom). A cluster atom is a cluster in which papers are closely connected (e.g., the similarity $K\left(x_{i}\right.$, $\left.x_{j}\right)>$ threshold). Papers with similarity less than the threshold will be assigned to disjoint cluster atoms.

F d c e a d be ea e f a e d a b a .F e a e, eca a ece a a \quad e a_{7} a $\quad \mathrm{f} d$ a b a a $\begin{aligned} & \text { b }\end{aligned}$ f d ece e a eca eac a ed-ba ed c e a e e c a . I add , e def e e ce f cluster centroid. De ed f e c a a , ee ae ca e d f d e ce d fac e, e da a a ea e ece e f ec e ece d a ca c a ed a e a e c ea f a da a ed ece.

2.2 Name Disambiguation

G e a e a e a, ede e b ca c a e a a e a a $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. T e b ca da a ea ca be deed b e c de a d ed e. We e a ada e e
 b ca da a. P b ca a d ea ae a - ba ed f a \quad a Hde Ma Rad Fed f ed a d ec ed a ,
c eac de (HMRF) de a fea ef c . T e c b e e e a a e a deac ed ea ea . A b e de ee f e e f f a aef a \quad ed a

 fea e a d e e be f e cc e ce a e c de b e a e e fea ef c
 a $\mathrm{a} f$

Definition 3 (Publication Informative Graph). Given a set of papers $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$, let $r_{k}\left(p_{i}, p_{j}\right)$ be a relationship r_{k} between p_{i} and p_{j}. A publication informative graph is a graph $G=\left(P, R, V_{P}, W_{R}\right)$, where each $v\left(p_{i}\right) \in V_{P}$ corresponds to the feature vector of paper p_{i} and $w_{k} \in W_{R}$ denotes the weight of relationship r_{k}. Let $r_{k}\left(p_{i}, p_{j}\right)=1$ iff there is a relationship r_{k} between p_{i} and p_{j}; otherwise, $r_{k}\left(p_{i}, p_{j}\right)=0$.

S e eeaeK e $\left\{y_{1}, \ldots, y_{K}\right\} \quad$ e a e a a d a b a e e n b ca ea e ea c e $y_{i}, i \in[1, K]$. M e ecfca, e a a f a ed a b a ca be def ed a:

1. $\mathrm{F} \quad \mathrm{a}_{7} \quad \mathrm{ed} a \mathrm{~b} \quad \mathrm{a} \quad \mathrm{be}$. T ef $a_{7} a$ eed c de b ca $a \quad b$ e fea e a caed eac a e ad ea be ee a e.
2. S e be a c ed a ac. Ba ed ef $a_{7} a$ ea \quad ed a ac $\begin{array}{lllllll}\text { a d } & \text { e } & \text { a effce } & \text { a } \\ \text { De e } & \text { e } & \text { be } & \text { e } & \text { e } & K . & \text { e }\end{array}$
), de e e eac a K.
I a ef ee a . F , edae cea f a_{7} e e e ed a bbe a fedfa e . Sec d, e a de, e. ., Ma Ra d Fed[16], a e a a ed de ea a da a. H e e, e
b ca f a e a , e a e be abor aced b dffe e e f ear. I cea ef fee ce (a a e e e a \quad c a a ab a c. I add , e a e be f e e K a a c a e a.

3 Our Framework

3.1 Basic Idea

We a e ba c be a f e a ed a b abe:1) a e a c e ed a e e a e abe (be
 ea c a e e / e ed f a
e de.Sec d, a a d de eec e HMRF de.Te bec ef c eHMRF de a \quad bab d b f dde a abe e $b e a, \quad$ ac $e f$ de eec a \quad.

3.2 Hidden Markov Random Fields

A Ma Ra d Fed a c d a bab d b f abe (dde a abe) a be e Ma e [16]. Ma ec a ca e fMRF ca be de ed. A H dde Ma Ra d Fed a e be f e fa f MRF a d c ce de ed f H dde $\mathrm{Ma} \quad \mathrm{M}$ de (HMM) [15]. A HMRF a c ed f ee c e : a be abe e f a d a abe $X=\left\{x_{i}\right\}_{i=1}^{n}$, a dde fed f a d a abe $Y=\left\{y_{i}\right\}_{i=1}^{n}$, a d e b d be ee eac a f a abe e dde fed.
Wef a_{7} e ed a b a be a a f e a a e dffe e c e.Le e
dde a abe Y be e c e abe a e. E e dde a abe y_{i} a e a a e f e e $\{1, \ldots, K\}$, c a e de e f ece e. T e be a a abe X c e d a e eeee a d a abe x_{i} e e a ed f a c d a bab d b $P\left(x_{i} \mid y_{i}\right)$ de e ed b e c ed dde a abe y_{i}. F e, e a d a abe X a ea ed be e e a edc d a de e de f e dde a abe Y, .e.,

$$
\begin{equation*}
P(X \mid Y)=\prod_{x_{i} \in X} P\left(x_{i} \mid y_{i}\right) \tag{1}
\end{equation*}
$$

F. 2 e a ca c e f e HMRFf e e a e F. 1. We ee a de e de ed e a e ded be ee e dde a abe c e d e ea F. 1. T e a e f eac dde a abe (e. ., $y_{1}=1$) de e ea e e .Wed de $e \mathrm{~d} e \mathrm{e}$ ea be ee e b, b e de ca a a e ede e de ce a e ea
A HMRF a ec a ca e f MRF, e bab d b f e dde a abe be e Ma e. T , e bab d b f e a e f $y_{i} \mathrm{f}$ e be a a abe x_{i} de ed e c e abe f be a a e ea $\quad x_{i}$ [24]. B ef da e a e e f a d fed [16], e bab d b f e abe c f a Y

Ma Rad Fed [16], [24]. M e acc ae, e

Fig. 2. Graphical representation of the HMRF model. $f\left(y_{i}, y_{j}\right)$ and $f\left(y_{i}, \mathbf{x}_{i}\right)$ are edge feature and node feature, respectively, and will be described in the next section.

$$
\begin{align*}
P(Y) & =\frac{1}{Z_{1}} \exp \left(\sum_{\left(y_{i}, y_{j}\right) \in E, k} \lambda_{k} f_{k}\left(y_{i}, y_{j}\right)\right) \tag{2}\\
Z_{1} & =\sum_{y_{i}, y_{j}} \sum_{\left(y_{i}, y_{j}\right) \in E, k} \lambda_{k} f_{k}\left(y_{i}, y_{j}\right)
\end{align*}
$$

a d b f e e c e b ca da a be e e a ed de e e ca $G a \quad a \quad d \quad b$ a e

$$
\begin{align*}
P(X \mid Y) & =\frac{1}{Z_{2}} \exp \left(\sum_{x_{i} \in X, l} \alpha_{l} f_{l}\left(y_{i}, x_{i}\right)\right), \tag{3}\\
Z_{2} & =\sum_{y_{i}} \sum_{x_{i} \in X, l} \alpha_{l} f_{l}\left(y_{i}, x_{i}\right),
\end{align*}
$$

e e $f_{k}\left(y_{i}, y_{j}\right)$ a \quad e a e e a f c \quad e a
ca ed efea ef c def ed ed e $\left(y_{i}, y_{j}\right)$ a d E e e e a ed e e a ; $f_{l}\left(y_{i}, x_{i}\right)$ a e a f c def ed de $x_{i} ; \lambda_{k}$ ad α_{l} a e e f e ed e fea ef c a d e de fea ef c , e ec e ; Z_{1} a d Z_{2} a e a_{7} a fac

T fac aef e dce, e e eafe e X de e e b ca e P ad e x_{i} de e e ec $v\left(p_{i}\right)$ f e a e p_{i}.

3.3 Disambiguation Objective Function

We def e a bec ef c a e Ma aP e c f a f e HMRF, .e., b a , $P(Y \mid X) . P(X)$ a a e a c a . T e ef e, acc d e Ba e e $P(Y \mid X) \propto P(Y) P(X \mid Y)$,
bec ef ca be def ed a

$$
\begin{equation*}
L_{\max }=\log (P(Y \mid X))=\log (P(Y) P(X \mid Y)) \tag{4}
\end{equation*}
$$

B b
(2) a d (3)
(4), e b a
$L_{\text {max }}$
$=\log \left(\frac{1}{Z_{1} Z_{2}} \exp \left(\sum_{\left(y_{i}, y_{j}\right) \in E, k} \lambda_{k} f_{k}\left(y_{i}, y_{j}\right)+\sum_{x_{i} \in X, l} \boldsymbol{\alpha}_{l} f_{l}\left(y_{i}, x_{i}\right)\right)\right)$.
$E \mathrm{e}, \quad \mathrm{e} a b \mathrm{e} b e c \mathrm{ef} c, \quad \mathrm{e} \quad \mathrm{e}$ d f fea eff c de fea ef c $f_{l}\left(y_{i}, x_{i}\right)$ a d ed e fea ef c $f_{k}\left(y_{i}, y_{j}\right)$, e e e e a b e f a a caed eac a e a d e ea f a be ee a e e ec e.
T e ed efea ef c $f_{k}\left(y_{i}, y_{j}\right)$ ed cate 7 e e be ee a e.I e , f a a ea a a d a a e a eac e, e e e a e a e be a ed e a ec e.S ecfca, e ed efea e f ca e e a e e a ca C P bVe e a d C A (a Tabe 2) a d a ea $e \mathrm{f}$ a. T , e def e e ed e fea e f c a

$$
\begin{equation*}
f_{k}\left(y_{i}, y_{j}\right)=K\left(x_{i}, x_{j}\right) \sum_{r_{m} \in R_{i j}}\left[w_{m} r_{m}\left(x_{i}, x_{j}\right)\right] \tag{6}
\end{equation*}
$$

He e, $K\left(x_{i}, x_{j}\right)$ a a $\mathrm{f} \quad \mathrm{c}$ be ee a e x_{i} a d $x_{j} ; w_{m}$ e e fea $\quad r_{m} ; R_{i j}$ de e e e f ea be ee x_{i} a $\mathrm{d} x_{j}$; a d $r\left(x_{i}, x_{j}\right)$ de e af f e ea be ee x_{i} a d x_{j}. T e e a def e e ea f c $r\left(x_{i}, x_{j}\right)$
def e b a a e a de c bed Def 3. He e, ef e c de a def c c b e e e $\mathrm{f} \quad \mathrm{a} \quad, . \mathrm{e} ., r_{1}\left(x_{i}, x_{j}\right)=\exp \left\{-\mid x_{i}\right.$. year $-x_{j}$.year $\left.\mid\right\}$. e T def de edf a be a e a e a b be: e C A a d C P bVe e eaa e fe e-de e de ,e., a e d b a e e a f c ed c fee ce / a e e a ecfcedadca a d \quad e $a b$ a e eac e a ecfc ed.

T e defea ef c $f_{l}\left(y_{i}, x_{i}\right)$ a ca e e a be f a a caed a e x_{i}. T e ba c dea e f e a e a e e a e a c e, e e a a e a e be a ed ece e.f e a e e a , e def e e defea ef $c \quad a$

$$
\begin{equation*}
f_{l}\left(y_{i}, x_{i}\right)=K\left(y_{i}, x_{i}\right)=K\left(\boldsymbol{\mu}_{(i)}, x_{i}\right) \tag{7}
\end{equation*}
$$

$$
\begin{align*}
L_{\max }= & \sum_{\left(x_{i}, x_{j}\right) \in E, k} \lambda_{k} K\left(x_{i}, x_{j}\right) r_{k}\left(x_{i}, x_{j}\right) \\
& +\sum_{x_{i} \in X, l} \boldsymbol{\alpha}_{l} K\left(x_{i}, \boldsymbol{\mu}_{(i)}\right)-\log Z \tag{8}
\end{align*}
$$

e e $Z=Z_{1} Z_{2}$. W a e e a, e c bere ef efea ef c $\quad \lambda_{k}$ a d e ef eea w_{m}, ad ea $\lambda \mathrm{f} \quad \mathrm{c}$.

3.4 Criteria for Model Selection

We eBa e a If a C e (BIC) a ec e
e ae e be f e e K. We def ea bec e $f \quad c \quad f \quad e d$ a b a a. O a bec ef c e K adf da be K a a \quad e e ba bec ef c

S ecfca, ef c de $K=1$, a ee a e e \quad e e a e e \quad a. T e, e e e a
 bc e, e a a e e ea e e dee e e e . Te ea e ea e c da fed (e., bc e ca be). I e ce, e ca M_{h} e de c e d e e e be h. We e ef e a e a fa fae a e de M_{h}, eeh a ef 1 $n, \quad \mathrm{c} \quad \mathrm{e}$.
N , a c e e be de f M_{h}. Ma ea e e ca be ed f de eec, c a S e e C effce [23], M De c Le (MDL) [34], A a e I f a C e (AIC) [1], a d e bab e a [22]. We c e BIC a e c e beca e BIC c ef da e a a e c e a c a MDL a d a a c de abe be . Ba ed e e c dea, e ea a a f e BIC ea e e [22] a ec e

$$
\begin{equation*}
B I C^{v}\left(M_{h}\right)=\log \left(P\left(M_{h} \mid P\right)\right)-\frac{|\lambda|}{2} \cdot \log (n), \tag{9}
\end{equation*}
$$

ee $P\left(M_{h} \mid P\right)$ e e bab f de M_{h} e e be a P.| $|\lambda|$ e be f a a ee M_{h} (c ca be def ed dffe e a , e. ., e

 ec d a a e a a ce, a BIC ce a a e a ae e de $M_{h} \mathrm{f}$ e edaa e. We e c e f e de eec beca e ca be ea e e ded dffe e a . F e a e, c e a c e a e K - ea [27] X ea [33] e ad eda a a de e de a d e e bab $P\left(M_{h} \mid P\right)$ ca be fed $P\left(P \mid M_{h}\right)$ acc d e Ba e a e $P\left(M_{h} \mid P\right) \propto$ $P\left(P \mid M_{h}\right) P\left(M_{h}\right)$ b a e $\quad P\left(M_{h}\right)$ a f. H ee, e ed a e ad a a e f de e de ce be ee e c e e. T e e $P\left(M_{h}\right)$ a f a ae. O def (2) c de e de e de ce a Ma fed.

4 Parameter Estimation

4.1 Algorithm

Te a a ee e a be dee e e a ef e a a ee $\Theta=\left\{\lambda_{1}, \lambda_{2}, \ldots ; \alpha_{1}, \alpha_{2}, \ldots\right\}$ ad dee ea e fa a e. M eacc ae, e $\begin{array}{llllll}\quad \mathrm{e} & \mathrm{e} & \mathrm{e} & \mathrm{d} & \mathrm{bec} \mathrm{e} \mathrm{f} \\ \mathrm{e} & \mathrm{ec} \\ \mathrm{ac} & \mathrm{d} & \mathrm{a} & \mathrm{de} P(Y \mid X, \Theta) .\end{array}$
A a e e, e ea a (cf. A 1) f a a ee a a c f ea e e : Assignment f a e , a d Update f a a e e Θ. Te ba c dea a e f a d c e a aa ee e Θ ad eec ace $d f$ eac c. Ne , ea eac a e c e c e a d e cac ae ece d feac a e -c e ba ed e

^Angóntntri \perp :'Pararneter estimation

Input: $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$
Output: model parameters Θ and $\gamma=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$, where $y_{i} \in[1, K]$

1. Initialization

1.1 randomly, initialize narameters Θ : ,
${ }^{1}, 2.2$ friveach paper x_{i}, choose an initıảl vảlue y_{i}, with $y_{i} \in[1, K]$;
1.3 calculate each paper cluster centroid $\mu_{(i)}$;
$\left.{ }_{i}\right) 1.4$ for each paper x_{i} and each relationship $\left(x_{i}, x_{j}\right)$, calculate $f_{i}\left(y_{i}\right.$, , and $f_{k}\left(y_{i}, y_{j}\right)$.

2. Assignment

2.1 assign each paper to its closest cluster centroid;

3. Update

3.1 update of each cluster centroid;
3. 2 update of me weight for each feature function.

F $\quad a_{7}$ a, e a d a \quad a e feac a a ee $(\lambda$ a d $\alpha)$. F $\quad a_{7}$ a f e c e ce d, e f e a a c e e d de f ec e a . Ba ca, a e a e a a e d be a ed d c e a . We eed a a e e de c bed fa
 $\gamma \mathrm{c}$ e a . If γ e a e be fere K, e ee γ a ed a a a e. If $\gamma<K$, e a d c ea e $(K-\gamma)$ a e a e c e ce d. If $\gamma>K$ e e ea e c e a ee ae K ef. We
d ce dea e a a e e e a a

Assignments. I Assignments, eac a e x_{i} a ed $\mu_{(h)} \quad$ a $\quad \mathrm{e} \log P\left(y_{i} \mid x_{i}\right)$

$$
\begin{align*}
& \log P\left(y_{i} \mid x_{i}\right) \propto L_{x_{i}}\left(\mu_{(h)}, x_{i}\right) \\
& \quad=\sum_{\left(x_{i}, x_{j}\right) \in E_{i}, R_{i}, k} \lambda_{k} K\left(x_{i}, x_{j}\right) r_{k}\left(x_{i}, x_{j}\right) \tag{10}\\
& \quad+\sum_{l} \alpha_{l} K\left(x_{i}, \mu_{(h)}\right)-\log Z,
\end{align*}
$$

ee Z de ade a a_{y} a fac x_{i} a d ca be e ed a e cae ab e ea e c e f ac $3321625100 \mathrm{a} \quad 213$-491.[(f 6 6-629.5(d ffe ()]TJ/F3 1
f c ,e. ., d e e a d ad e e.H e e,

Tef e (10) aea ac b a f e a f c $K\left(x_{i}, \mu_{(h)}\right)$ ad e ea a a f c $K\left(x_{i}, x_{j}\right), \quad$ c ca becac aed. H e e, acabe ba a e ac f e a
f c , .e., (Z), beca e e a $\mathrm{a}_{7} \mathrm{a}$ d a e ace e a $\left(Z=Z_{1} Z_{2}\right)$. A fe a a e bee \quad edf a ae fee ce, e. ., be ef a a [30] a d c a ed e e ce (CD)
[19]. We e a e a ae a f c ac a ed e e ce d a b a bec ef c
Ba ed Je e' e a [21], eca ba a e b d f e e a e - e d (L) aK bac -Lebe (KL) d e e ce

$$
\begin{align*}
L^{K L} & =K L(q \| P) \\
& =\sum_{y_{i}} q\left(y_{i} \mid x_{i}\right) \log \left(q\left(y_{i} \mid x_{i}\right)\right)-\sum_{y_{i}} q\left(y_{i} \mid x_{i}\right) \log \left(P\left(y_{i} \mid x_{i}\right)\right) \\
& =-H(q)-\left\langle\log \left(P\left(y_{i} \mid x_{i}\right)\right)\right\rangle_{q\left(y_{i}\right)} \tag{12}
\end{align*}
$$

$\begin{array}{ccccccc}\text { e e } q\left(y_{i} \mid x_{i}\right) & \text { a } & \text { a } & \text { a } & \text { f } & \text { e d } & \text { b } \\ \left(y_{i} \mid x_{i}\right) \cdot\langle.\rangle_{q} & \text { e e ec a } & \text { de } & \text { ed } & \text { b } & q . \\ \text { Ma } & \text { e } & - & \text { e } & \text { d f } & \text { e da a (5) } & \text { e }\end{array}$ e \quad e \quad KL d e e ce (12) be ee eda a d b $\quad q^{0}$ a d e e b d b e e be a abe, q^{∞}, ee ef e ca becac a ed b ebe a e c e a ed abe a d e ec d e e bab e e e de d b a be abe. A a , e b dff c eab ee a de e ec d e .AMa c a M eCa (MCMC) e dca be ed e ae ea a d b $q^{\infty}\left(y_{i} \mid x_{i}\right)$ e a f MCMC be e ed a $q^{0}\left(y_{i} \mid x_{i}\right)$. T d e e ce a [19], c a ae ed b b e e a Gbb a e (e e). T, e bec ef c bec e

$$
\begin{align*}
L^{K L} & =K L\left(q^{0} \| P\right) \approx K L\left(q^{0} \| P\right)-K L\left(q^{l} \| P\right) \\
& =\left\langle\log \left(P\left(y_{i} \mid x_{i}\right)\right)\right\rangle_{q^{0}\left(y_{i}\right)}-\left\langle\log \left(q^{l}\left(y_{i} \mid x_{i}\right)\right)\right\rangle_{q^{\prime}\left(y_{i}\right)} . \tag{13}
\end{align*}
$$

I c a ed e e ce ea , ead f
$K L\left(q^{0} \| q^{\infty}\right)$, e ze edffe e ce be ee $K L\left(q^{0} \| q^{l}\right)$ a d $K L\left(q^{l} \| q^{\infty}\right)$, ee q^{l} ed b e e l - e ec c f edaa ec (.e., be a) a a e e eaed afe l- e Gbb a . A dca ed [19], e e l ca be e a 1 cae.(T a e ca c de e Gbb a e a z e e $K L\left(q^{0} \| q^{1}\right)$). T e ced e f ec c eda a ec (.e., q^{1})f ed b q^{0} de c bed A
2.

F a , ba ed e ec ced da a ec , e ca cac ae (13). Te cace a e de a d. T a e e effce, e ca e e dee c ea fed a [44] e ace e a ced e.
 a ed e e a dae ea e f eac a e.A a e fa a e ef ed e ee e e a e f ed. T e ce e ea ed cce e ea.
Update. I U da e, eac c e ce d f da ed
b

$$
\begin{equation*}
\mu_{(h)}=\frac{\sum_{i: y_{i}=h} x_{i}}{\left\|\sum_{i: y_{i}=h} x_{i}\right\|_{\mathbf{A}}} . \tag{14}
\end{equation*}
$$

Te,b dffe e a e bec ef c
e ec eac aa ee λ_{k}, e a e

$$
\begin{equation*}
\frac{\partial L}{\partial \lambda_{k}}=-\sum_{\left(x_{i}, x_{j}\right) \in E} K\left(x_{i}, x_{j}\right) r\left(x_{i}, x_{j}\right)-\frac{\partial \log Z}{\partial \lambda_{k}} . \tag{15}
\end{equation*}
$$

We ee a e ec d e ac abe, beca e cac a f Z eed a b e f a e feac a e.A a , e a f e KL d e e ce bec ef c (13) a d e eCDa cac ae ede a e f $L^{K L}$ e ec λ_{k}

$$
\begin{align*}
\frac{\partial L^{K L}}{\partial \lambda_{k}} & =\left\langle\frac{\partial \log \left(P\left(y_{i} \mid x_{i}\right)\right)}{\partial \lambda_{k}}\right\rangle_{q^{0}\left(y_{i}\right)}-\left\langle\frac{\partial \log \left(q\left(y_{i} \mid x_{i}\right)\right)}{\partial \lambda_{k}}\right\rangle_{q^{1}\left(y_{i}\right)} \\
& =-\sum_{\left(x_{i}, x_{j}\right) \in E} K\left(x_{i}, x_{j}\right) r\left(x_{i}, x_{j}\right)-\left\langle\frac{\partial \log \left(q\left(y_{i} \mid x_{i}\right)\right)}{\partial \lambda_{k}}\right\rangle_{q^{1}\left(y_{i}\right)} . \tag{16}
\end{align*}
$$

Tef e e a c b a f e a f c a d e ec d e ca be cac a ed af e e1- e a (A 2).

F a , eac a a ee da ed b
$\lambda_{k}^{\text {new }}=\lambda_{k}^{\text {old }}+\Delta \frac{\partial L}{\partial \lambda_{k}}$,

4.2 Estimation of K

 bc e. We cac a e a ca BIC c ef e
e b de M_{2}. If $\operatorname{BIC}\left(M_{2}\right)>\operatorname{BIC}\left(M_{1}\right)$, e e e c e. Wecac aea ba BIC cef e e de. T e ce c e b de e f be f e.F a , e de e e ba BIC c e ce.

```
Algorithm 3. Estimation of \(K\)
Input: \(P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}\)
Output: \(K, Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}\), where \(y_{t} \in[1, K]\)
\(i=0, K=1\), that is to view \(P\) as one cluster: \(C^{(1)}=\left\{C_{1}\right\}\);
do\{
    foreach cluster \(C\) in \(C^{(i)}\{\)
        find a best two sub-clusters model \(M_{2}\) for \(C\);
        \(\operatorname{if}\left(\operatorname{BIC}\left(M_{2}\right)>\operatorname{BIC}\left(M_{1}\right)\right)\)
                split cluster \(C\) into two sub clusters \(C^{(i+1)}=\left\{C_{1}, C_{2}\right\}\);
                calculate BIC score for the obtained new model;
8: \}while(existing split);
```


O edffc be be f d e be bc e de f ec e C (Le 4). W dffe e $\quad a_{7} a \quad$ e \quad bc \quad e be dffe e . F a e, be a e a ed fa e be ef f ec e a de fca I d a b a , a c e ca c f e e a c e a . T \quad f e, e e e c e a a a_{7} ce dad a e d e abe e F e a a e e $|\lambda|$ (9), e def e a e ce d, .e.,

$$
\begin{equation*}
\sum_{i=1}^{K}\left(P\left(y_{i}\right)+\mu_{(i)}\right)+\sum_{\lambda \in \Theta} \lambda \tag{18}
\end{equation*}
$$

5 Experimental Results

5.1 Experimental Setting

Data Sets. We e a a ed ed e d e c e fA eM e. [40]. Wec ea ed a da a e, c c de 32 ea a a e a d 2,074 a e.I e e a e, e a e a e a caed afe e, f e a e C e C a e a e f ee e a d We Ga f ; e e a e ee be a. F e a e, e e a e 25 e e a e J Z a a d 40 e a ed Le Wa. S a c $f \quad$ daa e a e Tabe 3.F e P D de f CSc d ced a a d a b a a a f e 32 a a e.A ec a cea ed de e a a ce. Eac a e a abe ed a be d ca eac a e . T e abe a ca ed ba ed e b ca e a , ea e a d ba ed e aff a , e- a add e e e eb da aba e (e. ., ACM D a Lb a). We ca c a ed e Ka a c eff ce f e a a ed da a. T e a e a e

TABLE 3 Data Sets

	Abbr. Name $\begin{gathered}\text { \#P } \\ \text { a }\end{gathered}$	\#Publications	\#Actual Person	Abbr. Name ${ }^{\text {a }}$	\#Publications	\#Actual Person
		$r_{\text {ce }}$	-2,	T- zaisg'uru	in_{4}	\cdots
	Wen Gao	286	4	Jing Zhang	54	25
	Yi Li	42	21	Kuo Zhang	6	2
	Jie Tang	21	2	Hui Fang	15	3
	Rin. Y_{1} -	fiso	${ }^{1} 12$	' Leit' ${ }^{\text {chang }}$	${ }^{1} 209$	${ }^{1} \mathrm{4}$
	Rakesh Kumar	61	5	Michael Wagner	r 44	12
	Bing Liu	130	11	Jim Smith	33	5
	Ajay Gupta	27	4	Wei Wang	306	90
	Dimitry Pavlov	- 16	2	David Jensen	43	3
	Charles Smith	7	4	David Brown	53	7
	David C. Wilson	- 52	5	George Miller	17	2
	James H. Anderson	-n 112	2	James Johnson	17	3
	John Miller	74	2	Joseph Miller	10	2
	Paul Jones	13	3	Richard Taylor	93	10
	Robert Fisher	105	4	Robert Moore	92	3
	- Robert Williams	s 8		William Cohen	110	2

Ka a c e 0.82, c d ca e a d a ee e be ee e a a . F d a ee e e a a, e a ed a . T e da a e be e a a abe. ${ }^{1}$
We a f d a e d a b a e a e e e e ba a ced. F e a e, e e a e 286 a e a edb We Ga 282 f e a edb P f. We Ga f e I e f C a C e e Acade fSce ce a d f a e a ea ed b e e ee e a ed We Ga.
We e eaed ea be ee a e b ac. F e a e, fbe a a e b ed a SIGKDD, e c ea ed a C P bVe e e a be ee e. T e c fee cef a e (e. ., I e a a C fe e ce K ed eD c e a d Da a M a d ac (e. ., SIGKDD) a e c de ed a e a e.

Experimental Design. We e Pa e eP ec , Pa eReca, a d Pa eF P_{1} ce, e a ae e d ad a a e e d. T e a e ea e a e ada ed f e a a d a b a b a e abe. S ecfca ,f a a e a a ed e a e abe b e a a a , eca ac ec a.F a e e a e abe ed ced b a $a \quad a c, b$ d a e e a e abe e a a a ed da a e, e ca a a e ed ced a. T, eca def e e ea e a f

PairwisePrecision

$$
=\frac{\# \text { PairsCorrectlyPredictedToSameAuthor }}{\# \text { TotalPairsPredictedToSameAuthor }}
$$

PairwiseRecall

$$
=\frac{\# \text { PairsCorrectlyPredictedToSameAuthor }}{\# \text { TotalPairsToSameAuthor }}
$$

Pairwise $F_{1}=\frac{2 \times \text { PairwisePrecision } \times \text { PairwiseRecall }}{\text { PairwisePrecision }+ \text { PairwiseRecall }}$.
We c de ed e e a ba e e e d ba ed K ea [27], SOM [43], a d X - ea [33]. T e a e a ed f d e be f e e $K . I$ e e e d, e c b ea efea e def ed ed.S ecfca , $f \quad e, \quad a \quad a b a f \quad d$ a d e eaea

TABLE 4
Results of Name Disambiguation (Percent)

TABLE 5
Results of Our Approach with Different Settings

Method	Precision	Recall	F1-Measure
Our Approach (Auto K)	83.01	79.54	80.05
Our Approach (w/o auto K)	90.13	88.26	88.80
Our Approach (w/o relation)	63.05	50.59.	55.95.

f ed d a cef ca e ca de c be e c ea be ee e a e a e.O fa e d ec de e c ea a e de e de ce be ee a e e a d $\quad \mathrm{e}$ a e ed a ea e a f c be ee a e. We c d ced e e e . T e p a e a e c a e a 0.01, d ca a e e e b a ac a e a ca fca.

Tabe 6 e e fa a ce a f e be $K(\mathrm{e}$ be e db ac e e ac a be). We ee a e e a ed be b a ac aec e e ac a be. Tabe 5 f e e a eae $e \quad f \quad a \quad$ ac dffe e e , eer $/$ a K e e e e e f a ac a edef ed c e be K a d / ea e ee e e f a ac
e a (.e., e e a ed e fea ef c

$$
f_{k}\left(y_{i}, y_{j}\right) \quad \text { be } e_{7} \text { e . We ee a e e a }
$$ e ea , e ef a ce f a ac d a $(-23.08$ e ce b $\quad \mathrm{F}_{1} \quad$ c \quad e). T \quad c f a a de ca ca e de e de ce be ee a e d e

$$
\mathrm{d} \text { ef a ce. }
$$

We a ed X - ea $f d$ e be f e e K. We a ed e be a 1 a d a be a n, e a e e a . We f d a X - ea fa f d e ac a be. I a a ec e e ce Y L 2. T e ea be a X - ea ca a e e f e e a
be ee a e.

TABLE 6
Result of Automatically Discovered Person Number

	Person Name	Actual Number	Auto Number	Person Name	Actual Number	Auto Number
	Cheng Chang	3	3	Dimitry Pavlov	2	1
	Wen Gao	4	5	David Jensen	3	6
	Yi Li	21	13	David Brown	7	9
	Jie Tang	2	2	David C. Wilson	5	5
	Gang Wu	16	12	George Miller	2	6
	Jing Zhang	25	16	James H Andersnn...	?-	7.
	Kuo Zhang	2	2	James Johnson	3	3
	Hui Fang	3	3	John Miller.	2	5.
	Bin Yu	12	10	Joseph Miller	2	3
	Lei Wang	40	22	Paul Jones	3	5
	Rakesh Kumar	- 5	5	Richard Taylor	10	14
	Michael Wagner	10	11	Robert Fisher	4	7
	Bing Liu	11	12	Robert Moore	3	6
	Jim Smith	5	5	Robert Williams	2	5
	Wei Wang	90	22	William Cohen	2	9
	Ajay Gupta	4	4 6	Charles Smith	4	

TABLE 7 Comparison with DISTINCT

Person Name		DISTINCT			Our Approach				
			Rec.	F1	Prec.	Rec.	F1		
heng Chang			44.	49.0	100.	100.00	100.00		
	en Giau	3,27,		39.40	35,260	28	3, 390		
	Tang	$\begin{array}{\|c\|} \hline 79.36,9 \\ \|100.00\| \\ \hline \end{array}$		$\begin{array}{\|l\|l\|} \hline 93.37 .18 \\ \hline 75.56 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline 85.8 .0 \vee \\ \hline 86.08 \\ \hline \end{array}$	100 n 0 1	$100 \Omega 01100 \Omega 0$		
	ing Zhang			83.91		100.00	91.25		
	Küo Zhang		8.57		84.78	81.56	100.00	100.00	
	David Jensen		85.69	100.00	92.29	83.83	68.4K		
).37	David Brown		69.77	74.99	72.29	89.32	91.45		
3.55	David C. Wilson		87.10	90.00	88.53	94.33	67.30		
5.4	Richard Taylor		68.35	63.11	65.63	94.33	79.72		
0.00	Charles Smith		78.42	76.67	77.54	100.00	100.00		
0.00	Hui Fang		88.60	95.00	91.69	100.00	100.00		
3.01	Rakesh Kumar		92.90	96.80	94.81	99.14	96.91		
3.97	Michael Wagner		72.30	75.40	73.82	85.69	82.31		
7.36	Bing Liu		78.30	95.70	86.13	88.25	86.49		
5.07	Jim Smith		86.30	90.40	88.30	96.37	93.80		
3.05	Lei Wang		80.80	89.60	84.97	89.17	88.94		
2.42	Bin Yu		68.90	77.80	73.08	95.27	72.63		
4.14	Wei Wang		78.60	78.30	78.45	85.19	83.12		
7.1	Ajay Gupta		98.70	92.30	95.39	97.67	96.55	8 9	
. 48	Avg.		81.04	83.82	82.14	93.78	89.80		

We c a ed a ac DISTINCT [49]. We ed e a e a e e ed b [49] a d e e f c a . We c dced e e e e da a e, c a e e e fda a ed [49]. F e a e, e a e 109 a e f Le Wa a d 33 a e f J S , e [49] e be a e 55 a d 19. I add , e d c de e P ceed Ed ea . Tabe 7 ec a e. We ee a a e a e e dcea e $\mathrm{f} \quad$ DISTINCT $\left(+8.34 \% \mathrm{~b} \quad \mathrm{~F}_{1}\right)$. M e e, ac ac a ead a a e a ca a a ca f d e be K, e ea DISTINCT e be eed be ed b e e. T e ea ed DISTINCT a d ac a e dffe e. DISTINCT a c de e - a e a d a e-c feece ea, a dde d ec c de eC A a dCP bVe e ea a e ea ca be de edf e a e c fee ce a da - a e ea

5.2.2 Efficiency Performance

We e a a ed e eff ce c ef a ce fac ac f e 32 a a e a de c e I e C e D ce (1.6 GH). Tabe 8 e CPU e e edfa e a e dffe e a . We a 100 b d a 100 a
 e fa a

$$
a \quad \text { eac } \quad \text { e. }
$$

TABLE 8
Comparison of Efficiency Performance (Seconds)

Fig. 3. Contribution of relationships.

5.2.3 Feature Contribution Analysis

We e aed ec b f e def ed fea e (c d ed ea d defea e)f a ed a b a. S ecfca, ef a e d d a fea e b e ef a ce, e add efea e eb e e de f e d a b a e.I a c a, ef e C A ,f edb add C a , a d e C P bVee, Pa e T e.I eac e, ee a ae e ef a ce f ed. F. 3 e a e a e Pec , a e a e Reca, a daeaeF1- c e f e d dffe e fea ec b a . A eac e, e be ed ee. We ca a ee a f efea e (e ce

5.2.4 Distribution Analysis

Wea ef ad b a a ad e ed c e d[10]. We f d a efea ed bf a a e ca be ca cae z ed e f ce a : 1) b ca fdffe e a e cea e a aed (H Fa). Na ed a b a d fda a ca be ed e e b a ac a d e be K ca a bef dacc ae ;2) b ca-
 ca ac e ea F_{1} c e f 87.36 ece ad ed ce ed be K c e eac a be; a d3) b ca fdffee a ae ed (e., J Z a). O
e dca ba a ef ace f 91.25 ece. H e e, $\quad d$ bedff acc ae f d e be K. F ea e, e be f db a ac f J Z a 14, b e c ec be d be 25. F a de a ed a a , ea e efe [41].

5.2.5 Application Experiments

Wea ed e a ed a b a
c de f e e e e e e e e e ce.I a c a, ee a aede e f d a d a ed a b a .S ecfca , e eeced $12 \mathrm{fe} e \mathrm{e} e \mathrm{f}$ e effeme, a d ed a ed ee a ce d e [6] e e a d e ceae a daa e f e a a. I ee ed eade ae efe ed [51], [40]f dea f e e e e a e. We c d cede a a e f P@5, P@10, P@20, P@30, R - ec, ea a e a e ec (MAP), bpref, a d ea ec ca a (MRR). F . 4 e efe ef d .I F . 4 , EF e ee e e f d a ed a b a b e da dEFNA e ee e a d d a b a. We ee a cea e e ca be ba edb ed $a \operatorname{ed} a \operatorname{b} a \quad a \quad a c$.

Fig. 4. Performances of expert finding.

5.3 Online System

T f e de ae e effec e e f e ed a ac, e a ea ed ed a b a e d e A e e e.F.5 a a f e d a b a e.Te e eace f JeTa a d e e ee effe e e f e a e a d be e de a ed fe f a f eac e.Te e d a ff e dead fa e e a ead eeae ed a b a e f

6 Discussion

6.1 Connections with Previous Work

Wea a e ec ec f fa e eea e d a b a /c e
Connection with K-means: O fa e ca de c be ea be ee da a e ea K - ea [27] ca . I e e ce, fa e e ed e e a f c de e ea .B e eed e e af c f (8), e a e

$$
\begin{equation*}
L_{\max }=\sum_{x_{i} \in X, l} \alpha_{l} K\left(x_{i}, \mu_{i}\right)-\log Z . \tag{19}
\end{equation*}
$$

B f e e e e $\alpha_{l} \mathrm{f}$ eac a f c , e ba a a e K - ea c e a

Connection with X-means: X - ea [33] ed d a ca f d ec e be K.I a e BIC f de eec. H e e,a de dffe a e f X - ea , e eec ce a d e c e a aea dffe e.Te de eec

Fig. 5. Name disambiguation system (http://arnetminer.org).
e d fa e a a $\begin{aligned} & \text { - ea f e } \\ & \text { e Je Ta }\end{aligned}$ e c de bab $P(Y)$ f , .e., Na a Sce ce F da f C a (N.61073073), e de edece be ee da a E ce f C eeNa a Ke F da Re eac (N.60933013,
 method:I c a -ba ed c e ,e., [2], e e ca
ba ed

> e e
[51], [41]. T e
a c a
c de
a dca

- . M
ea a da be ed ec e a dca ea da be ed d ffe e c e. We ca ada fa e a c a -ba ed c e b edef eed e e a f
Connection with disambiguation using spectral graph clustering: S ec a a c e [12] a a f d b a c fea be ee da a . K - a ec a a c e a a bee e ed f a e d a b a [18]. We ca e a e a ed da a \quad a e e a ed d ffe e c e (.e., $I(i \neq j))$ e bec ef c Te, fa e ca ada

$$
\begin{align*}
& \text { e ec d a f } \\
& L_{\min }=-\sum_{\left(x_{i}, x_{j}\right) \in E, R, k} K\left(x_{i}, x_{j}\right) r_{k}\left(x_{i}, x_{j}\right)+\log Z . \tag{20}
\end{align*}
$$

I e e ce, e bec ef c ea a e e e e ea e bab e e HMRF a d f c ede e de ce be ee a e.

$$
\mathrm{C} \text { a } \quad \mathrm{e} \text { e }, \quad \mathrm{fa} \mathrm{e}
$$

ffe e ea ad a a e:1)I ad a e d, a e f a e ae de e de, ca a e ad a a e f ea be ee a e . 2) Te ed fa e ca be ea e e ded e - e ed ea b e feedbac 3) O
fa e ca be e ed a a e ea fa e eea e ed ed.

7 Conclusion and Future Work

I a e, e a e e aed e be f a e d a b a . We a ef a_{7} ed e be a fed fa e ad ed a e e a_{7} ed bab c de e be. We a edef edad a b abec ef c f e be a d a e eda - e a a e e a a We a e a e edad a ca ac f e a e be f e e K. E e e a e dcae a e ed e d fca ef e ba e e e d. W e a ed e e f d , cea e e (+2\%) ca be ba ed.
A e e e, dbe ee ae a e \quad f e \quad e $a \quad f \quad$ a e d a b a , a e a b be e e e e. M e e, a ee d
c
de eLDAca e a ed a b a

AcKnowledgments

$$
\begin{aligned}
& \text { Tea }
\end{aligned}
$$

$$
\begin{aligned}
& \text { d } \\
& \text { e ce c de f DISTINCT f e c a e e } \\
& \text { e. Te a a P f. P Y f a } \begin{array}{l}
\text { e }
\end{array}
\end{aligned}
$$

N .61035004), a daS ec a F df FSSP.

References

[1] H. A a e, A Ne L a e Sa ca M de Ide faIEEE Trans. Automatic Control, . AC-19, . 6, 716-723, Dec. 1974.
[2] S. Ba , M. B e , a d R.J. M e, A P bab cFa ef Se -S e ed C e , Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '04), . 5968, 2004.
[3] R. Be e a a d A. McCa , D a b a Web A ea a ce fPe e aS ca Ne, Proc. Int'l Conf. World Wide Web (WWW '05), . 463-470, 2005.
[4] O. Be e , H. Ga ca-M a, D. Me e a, Q. S, S.E. W a , a d J. Wd , S : A Ge e cA ac E Re , The VLDB J., . 18, . 255-276, 2008.
[5] I. B a ac a a a d L. Ge , C ec e E Re Rea a Da a, ACM Trans. Knowledge Discovery from Data, . 1, a c e 5, 2007.
[6] C. B c e a d E.M. V ee, Re e a E a a I c e e I f a , Proc. Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '04), . 25-32, 2004.
[7] Z.C e ,D.V.Ka a , a dS.Me a, Ada eGa ca A ac E Re , Proc. Seventh ACM/IEEE-CS Joint Conf. Digital Libraries (JCDL '07), . 204-213, 2007.
[8] Z. C e, D.V. Ka a , a dS. Me a, E C e A
Proc. ACM SIGMOD Int'l C
Conf. Management of Data (SIGMOD . 207-218, 2009.
 C e U ., 2003.
[10] D. Ca, X. He, a d J. Ha , S ec a Re e f D e a Red c , ec ca e , 2856, UIUC 2004.
[11] P.T. Da , D.K. E , a d J.L. K a a , Me d f P ec e Na ed E Mac D a C ec , Proc. ACM/IEEECS Joint Conf. Digital Libraries (JCDL '03), . 125, 2003.
[12] C. D , A T a S ec a C e , Proc. Int'l Conf. Machine Learning (ICML '04), 2004.
[13] M. E e, R. Ge, B.J. Ga, Z. H , a d B. Be -M e, J C e A a fA b e Da a a d Rea Da a: T e C ec ed K-Ce e P be , Proc. SIAM Conf. Data Mining (SDM '06), 2006.
[14] S. Ge a a d D. Ge a, S c a cRea a , Gbb D b a d e Ba e a Re a fI a e, IEEE Trans. Pattern Analysis and Machine Intelligence, . PAMI-6, . 6, . 721-742, N . 1984.
[15] Z. G a a a a d M.I. J da, Fac a H dde Ma M de , Machine Learning, . 29, . 245-273, 1997.
[16] J. Ha e e a dP.C ff d, Ma Fed F eGa a d La ce, U b ed a c , 1971.
[17] H. Ha, L. G e, H. Z a, C. L, a d K. T , T S e ed Lea A ac e f Na e D a b á A C a , Proc. ACM/IEEE Joint Conf. Digital Libraries (JCDL '04), . 296-305, 2004.
[18] H. Ha ,H. Z a, a dC.L.G e, Na eD a b a A C a U aK-Wa S ec a C e Me d, Proc. $A C M /$ IEEE Joint Conf. Digital Libraries (JCDL '05), . 334-343, 2005.
[19] G.E. H , T a P d c f E e b M, C a e D e e ce, J. Neural Computation, . 14, . 17711800, 2002.
[20] L. Ja J. Wa ,N. A , S. Wa , J. Z a , a d L. L., GRAPE: A Ga -Ba edFa e f D a b a Pe eA ea a ce Web Sea c , Proc. Int'l Conf. Data Mining (ICDM '09), . 199208, 2009.
[21] M.I. J da, Z. G a a a , T. Jaa a, a d L. Sa , A I d c Va a a Me d f Ga ca M de , Learning in Graphical Models, . 37, . 105-161, 1999.
[22] R. Ka a d L. Wa e a, A Refe e ce Ba e a Te f Ne ed H e e a dI Rea eSc ay C e , J. Am. Statistical Assoc., . 90, . 773-795, 1995.
[23] L. Ka f a a d P. R ee, Finding Groups in Data: An Introduction to Cluster Analysis. W e , 1990.
[24] R. K de a a d J.L. S e , Markov Random Fields and Their Applications. A . Ma . S c., 1980.
[25] H. K c, S. Ge a, a d A. Ke a a, H dde Ma Ra d Feed, J. Annals of Applied Probability, . 5, . 3, 577-602, 1995.
[26] X. L, P. M e, D. R , Ide fca a d T ac f A b Na e:D c a eadGe e a eA ac e, Proc. 19th Nat'l Conf. Artificial Intelligence (AAAI '04), . 419-424, 2004.
[27] J. MacQ ee, S e Me d f Cayca a d A a f M a a e Obe a , Proc. Fifth Berkeley Symp. Math. Statistics and Probability, 1967.
[28] D.M. McRae-S e ce a d N.R. S adb, A b e Sa e A : AKT eA , a C a G a A ac Na e D a b a , Proc. ACM/IEEE Joint Conf. Digital Libraries (JCDL '06), . 53-54, 2006.
[29] E. M , W.W. C e , a d A.Y. N, C e a Sea c a d Na e D a b a E a U G a , Proc. 29th Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR '06), . 27-34, 2006.
[30] K.P. M , Y. We, a d M.I. J da, L Be ef P a a f A a e I fe e ce: A E ca S d, Proc. Conf. Uncertainty in Artificial Intelligence (UAI '99), . 467475, 1999.
[31] M.E.J. Ne a a d M. G a, F d a d E a a C S c e Ne , Physical Rev. E, . 69, . 026113, 2004.
[32] B. O a d D. Lee, Sca abe Na e D a b a U M Le e Ga Pa , Proc. SIAM Int'l Conf. Data Mining (SDM '07), 2007.
[33] D. Pe e a d A. M e, X-Mea : E e d K-Mea Effce E a f e N be f C e , Proc. Int'l Conf. Machine Learning (ICML '00), 2000.
[34] J. R a e, A U e a P f I e e a d E a b M $\begin{gathered}\text { De c Le , J. Annals of Statistics, . 11, . 2, }\end{gathered}$ 416-431, 1983.
[35] J. S a d J. Ma, N a a_{7} ed C a d I a e Se e a IEEE Trans. Trans. Pattern Analysis and Machine Intelligence, $.8, \quad .888-905$, A . 2000.
[36] L. S , B. L , a d W. Me, A La e T с M de f C e e E Re , Proc. IEEE Int'l Conf. Data Eng. (ICDE '09), . 880-891, 2009.
[37] Y. S , J. H a , I.G. C c , J. L, a d C.L. G e, Eff ce T c-Ba ed U e ed Na e D a b a , Proc. ACM/ IEEE Joint Conf. Digital Libraries (JCDL '07), . 342-351, 2007.
[38] Y. S , Y. Y, a d J. Ha, Ra -Ba ed C e f He e e e I f a $\quad \mathrm{Ne} \quad \mathrm{S}$ a $\mathrm{Ne} \quad \mathrm{Sc}$ ea, Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '09), 2009.
[39] Y.F. Ta , M. Ka , a d D. Lee, Sea c E e D e A D a b a , Proc. ACM/IEEE Joint Conf. Digital Libraries (JCDL '06), . 314-315, 2006.
[40] J. Ta , J. Z a , L. Ya, J. L, L. Z a , a d Z. S , A e M e : E ac a d M f Acade c S c a Ne, Proc. 14th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '08), 2008.
[41] J. Ta, L. Ya, D. Z a , a d J. Z a, A C b a A ac Web U e P f , ACM Trans. Knowledge Discovery from Data, . 5, a c e 2, Dec. 2010.
[42] Y. T a,R.A. Ha , a d J.M. Pa e, Eff ce A e a f G a $\mathrm{S} \quad \mathrm{a}_{7} \mathrm{a}$, Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '08), . 567-580, 2008.
[43] J. Ve a a d E. A e , C e f e Se f-O a ${ }_{7}$ Ma , IEEE Trans. Neural Network, . 11, . 3, . 586-600, Ма 2000.
[44] M. We a d G.E. H , A Ne Lea A f Mea Fe d B 7 a Mac e, Proc. Int'l Conf. Artificial Neural Networks (ICANN '01), . 351-357, 2001.
[45] M. We a dK.K a a, Ba e a K-Mea a a Ma ${ }^{7}$ a--E ec a A , Proc. SIAM Int'l Conf. Data Mining (SDM '06), . 472-476, 2006.
[46] S.E. W a , D. Me e a, G. K a, M. T e bad, a d H. Ga c a-M a, E $\operatorname{Re} \quad$ e a e B c , Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '09), 219-232, 2009.
[47] S.E. W a , O. Be e , a d H. Gaca-M a, Ge e c E Re Ne a e R e, The VLDB J., . 18, . 6, . 1261-1277, 2009.
[48] X. X , N. Y , Z. Fe , a d T.A.J. Sc e e, Sca : A S c a C e A f Ne , Proc. ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (SIGKDD '07), . 824-833, 2007.
[49] X. Y , J. Ha , a d P.S. Y , Ob ec D c : D
Obec Ide ca Na e, Proc. Int'l Conf. Data Eng. (ICDE '07), . 1242-1246, 2007.
[50] H. Y ,W.K , V. Ha a , a d J. W b , A La e Sca e,
 . 3, . 380-404, 2006.
[51] D. Z a , J. Ta , J. L, a d K. Wa, A C a -Ba ed P bab cFa e f Na e D a b a , Proc. ACM Conf. Information and Knowledge Management (CIKM '07), . 10191022, 2007.
[52] Y. Z , H. Ce, a d J.X. Y, G a C e Ba ed S c a/A b eS a e , Proc. VLDB Endowment, . 2, . 1, . 718-729, 2009.

Jie Tang is an associate professor at Tsinghua University. His research interests are social network analysis, data mining, and semantic web.

A.C.M. Fong is a professor in the School of Computing and Mathematical Sciences, Auckland University of Technology. He has published widely in the areas of data mining and communications.

Bo Wang is currently working toward the PhD degree from Nanjing University of Aeronautics and Astronautics. His research interests include transfer learning and information network analysis.

Jing Zhang received the MS degree from Tsinghua University in 2008. Her research interests include information retrieval and text mining.
\triangleright For more information on this or any other computing topic, please visit our Digital Library at www.computer.org/publications/dlib.

